
Chapter 10: Deep Learning

 This chapter will focus on neural networks as the primary example 
of deep learning.

 First developed in the 1980’s it has seen a resurgence since 2010.
 A learning method developed in different fields, statistics and 

artificial intelligence.
 The method generates a derived variable from linear functions of 

the predictors.
 These linear functions are then used as inputs to non-linear 

functions to predict outcomes.



Single Layer Neural Networks

 This figure shows a simple feed-forward 
neural network

 It has four predictors (p=4), X1,..,X4
make up the input layer.

 Each predictor feeds into each of the K
(5) hidden units, which produce 
activations, A1,..,A5.

 The activations then feed into the output 
layer.



Single Layer Neural Networks

 The general model for the response is, 𝑓𝑓 𝑋𝑋 = 𝛽𝛽0 + ∑𝑘𝑘=1𝐾𝐾 𝛽𝛽𝑘𝑘ℎ𝑘𝑘(𝑋𝑋)
 The activation functions, ℎ𝑘𝑘(𝑋𝑋), are modeled by a pre-defined 

nonlinear function, 𝑔𝑔 𝑤𝑤𝑘𝑘0 + ∑𝑘𝑘=1
𝑝𝑝 𝑤𝑤𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘 = ℎ𝑘𝑘(𝑋𝑋). For the previous 

example that means there are a total of 30 parameters to 
estimate.

 In the past a sigmoid activation function was used, 𝑔𝑔 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧

. 
Currently the ReLU (rectified linear unit) is favored,

𝑔𝑔 𝑧𝑧 = (𝑧𝑧)+= � 0 𝑖𝑖𝑓𝑓 𝑧𝑧 < 0
𝑧𝑧 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑤𝑤𝑖𝑖𝑜𝑜𝑜𝑜



Activation Functions

If the activation function was linear
then the entire model would be linear.

The non-linear activation functions allow
the model to capture complex 
nonlinearities and interaction effects.



Multilayer Neural Networks
This example is for digital recognition of handwritten
numbers. Input is a 28 × 28 grid of 784 pixels.

There are two hidden layers, L1 (256 units) and L2 (128 
units), and 10 output variables, 0, 1…, 9.

The first activation layer is like the single layer neural 
network, 𝐴𝐴𝑘𝑘

(1) = ℎ𝑘𝑘
1 (𝑋𝑋) for k= 1 … K1.

The second layer treats the activations, 𝐴𝐴𝑘𝑘
(1), as inputs, 

𝐴𝐴𝑘𝑘
(2) = ℎ𝑙𝑙

2 𝑋𝑋 = 𝑔𝑔 𝑤𝑤𝑙𝑙0
(2) + ∑𝑘𝑘=1

𝐾𝐾1 𝑤𝑤𝑙𝑙𝑘𝑘
(2)𝐴𝐴𝑘𝑘

(1) for l= 1 … K2.

W1 is the matrix of weights (coefficients) that feed input 
to the first layer. The matrix has 785 (784 pixels 
+intercept) × 256 (grey scales) = 200,960 elements.

The output layer takes the second layer activations and 
generates the 10 outputs, 𝑍𝑍𝑚𝑚 = 𝛽𝛽𝑚𝑚0 + ∑𝑙𝑙=1

𝐾𝐾2 𝛽𝛽𝑚𝑚𝑙𝑙𝐴𝐴𝑙𝑙
(2)



Multilayer Neural Networks: outputs

 If the outputs were quantitative variables then 𝑓𝑓𝑚𝑚 𝑋𝑋 = 𝑍𝑍𝑚𝑚.
 However, if we are classifying inputs to categories we change the 

𝑍𝑍𝑚𝑚 to probabilities,𝑓𝑓𝑚𝑚 𝑋𝑋 = 𝑒𝑒𝑍𝑍𝑚𝑚

∑𝑙𝑙=0
9 𝑒𝑒𝑍𝑍𝑙𝑙

, called the softmax activation 

function.
 For a quantitative response the model is trained by minimizing the 

MSE, ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) 2.
 For a qualitative variable we will minimize the negative of a 

multinomial log-likelihood, −∑𝑖𝑖=1𝑛𝑛 ∑𝑚𝑚=0
9 𝑦𝑦𝑖𝑖𝑚𝑚log(𝑓𝑓𝑚𝑚 𝑥𝑥𝑖𝑖 ). Here 𝑦𝑦𝑖𝑖𝑚𝑚 = 1, if 

𝑦𝑦𝑖𝑖𝑚𝑚 = 𝑚𝑚 and 0 otherwise.
 The neural network has a large number of parameters and thus 

needs regularization by either of two methods: ridge regularization 
or dropout regularization. 



Convolutional Neural Networks (CNN)

 The technique will be illustrated with a categorical response 
(animal name) and digital image inputs. There are a total of 100 
classes of animals, e.g. beaver (aquatic animal).

 Each image in the CIFAR100 database has a resolution of 32 × 32 
pixels. Associated with each pixel are three, eight-bit numbers 
representing colors, red, blue, and green.

 These numbers are organized in a three dimensional array called a 
feature map.

 The first two axes of the array are spatial, each with 32 
dimensions. The third axis is the channel axis representing the 
three colors.



Convolutional Neural Networks

 The network takes in small, 
local features.

 These are then convoluted to 
combine the small features into 
larger recognizable parts.

 The animal can then be 
identified from these 
recognizable parts.



Convolution Layers

 The original image data is a 4 × 3 matrix,

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑜𝑜 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖
𝑗𝑗 𝑘𝑘 𝑙𝑙

.

 The convolutional filter is, 𝛼𝛼 𝛽𝛽
𝛾𝛾 𝛿𝛿 .

 The convolved image is, 
𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑑𝑑𝛾𝛾 + 𝑜𝑜𝛿𝛿 𝑏𝑏𝛼𝛼 + 𝑐𝑐𝛽𝛽 + 𝑜𝑜𝛾𝛾 + 𝑓𝑓𝛿𝛿
𝑑𝑑𝛼𝛼 + 𝑜𝑜𝛽𝛽 + 𝑔𝑔𝛾𝛾 + ℎ𝛿𝛿 𝑜𝑜𝛼𝛼 + 𝑓𝑓𝛽𝛽 + ℎ𝛾𝛾 + 𝑖𝑖𝛿𝛿
𝑔𝑔𝛼𝛼 + ℎ𝛽𝛽 + 𝑗𝑗𝛾𝛾 + 𝑘𝑘𝛿𝛿 ℎ𝛼𝛼 + 𝑖𝑖𝛽𝛽 + 𝑘𝑘𝛾𝛾 + 𝑙𝑙𝛿𝛿

 The convolved image has now added pieces of data from a close 
neighbor which for image analysis means a nearby piece of 
anatomy.



Convolution Filters
 Application (Tiger) of 15×15 filters with either a narrow strip of 

horizontal 1’s (the rest 0’s) or vertical 1’s.
 The original picture is the input and 

the convolved images are the first hidden
layer.

 For the CIFAR100 database each color
channel has a 32×32 feature map. A
single convolution filter will also have 3,
3×3 channels.

 The output of these convolutions is a two dimensional feature map 
and no further reference to color is made except for its inclusion in 
the convolution.

 K filters will produce K two-dimensional feature maps. 
 Together they are a three-dimensional map with K channels.
 An ReLU activation function may be applied to the convolved image.
 This would be treated as a separate layer – called a detector layer.



Pooling Layers

 These condense a large image into a smaller summary image.
 One method is max pooling, applying a summary to non-

overlapping 2×2 blocks. This will reduce the size of the image by a 
factor of 2 in each dimension.

 Example:
1 2 5 3
3 0 1 2
2 1 3 4
1 1 2 0

→ 3 5
2 4



Architecture of a Convolutional Neural Network

 There are usually multiple rounds of convolution and 
pooling.

 Since the pooling layer decreases the size of each feature, 
this is usually followed by application of an increased 
number of filters that produce a greater number of 
channels.



Architecture of a Convolutional Neural Network

 To keep the convolved maps the same dimension as the original 
maps “padding” is applied.

 When the channel feature map has been reduced to a few pixels 
the image is “flattened”.

 They are fed into one or more fully connected layers before 
reaching the softmax output layer which produces 100 probabilities 
for the 100 different classes. 



Recurrent Neural Networks (RNN)

 Examples: a movie review on the IMDb database. Can we 
determine if it is a positive of negative review?

 The data must first be “featurized”. That is we have to define a set 
of features from the text.

 Bag-of-words approach. Take, say, distinct pairs of words. So a 
due like “Blissfully long” might be indicative of a positive review 
while “Blissfully short” might be a negative review.

 Treat the document as a sequence assuming that their order 
matters.

 Examples of sequential data might include documents, time series 
like temperature, rainfall, and air quality, financial time series.



Recurrent Neural Networks

 A word sequence might 
be broken into words 
and stored in a vector, 
X={X1, …, XL}, where 
each Xl is a word.

The sequence above is analyzed one vector at a time. Each unit produces activation output, 
Al, to a hidden layer. The units are then updated with their input, Xl, and the activation output 
from the unit before them, Al-1. Each unit produces output, Ol, although only the last output 
may be of interest.

More generally each input vector may be composed of p components, 𝑋𝑋𝑙𝑙𝑇𝑇 = 𝑋𝑋𝑙𝑙1, . . ,𝑋𝑋𝑙𝑙𝑝𝑝 . The 
hidden layer consists of K units (these may be the updates), 𝐴𝐴𝑙𝑙𝑇𝑇 = 𝐴𝐴𝑙𝑙1, . . ,𝐴𝐴𝑙𝑙𝐾𝐾 . Thus, W is the K×
(p+1) shared weights, wkj, for input layer. U is the K×K matrix of weight for the hidden-to-
hidden layer, uks. Finally, B is the K+1 vector of weight for the output layer, βk.



Recurrent Neural Networks

 The activations are calculated as, 

𝐴𝐴𝑙𝑙𝑘𝑘 = 𝑔𝑔 𝑤𝑤𝑘𝑘0 + �
𝑘𝑘=1

𝑝𝑝

𝑤𝑤𝑘𝑘𝑘𝑘𝑋𝑋𝑙𝑙𝑘𝑘 + �
𝑠𝑠=1

𝐾𝐾

𝑢𝑢𝑘𝑘𝑠𝑠𝐴𝐴𝑙𝑙−1,𝑠𝑠

 The output is, 𝑂𝑂𝑙𝑙 = 𝛽𝛽0 + ∑𝑘𝑘=1𝐾𝐾 𝛽𝛽𝑘𝑘𝐴𝐴𝑙𝑙𝑘𝑘
 Note that the same weights are used as the information is 

processed along the sequence, e.g. the weights in W, U and B are 
not functions of l.

 For regression problems the loss function is 𝑌𝑌 − 𝑂𝑂𝐿𝐿 2. The other 
outputs are not used (unless the output is vector valued).

 However, 𝑂𝑂𝐿𝐿 does depend on all the output due to the sequential 
processing of the hidden layer outputs.



Time

Fr
eq

ue
nc

y 
(%

)

10

20

30

40

50

60

70
Standard
Chiricahua

1939 1940 1941 1942

Time Series Forecasting

 Observations of one or more variables 
that are taken at regular time intervals.

 Examples include chromosome inversion 
frequencies in Drosophila pseudoobscura
or financial data like trading volumes 
(vt), the Dow Jones average (rt) or 
market volatility (zt).

For a long series, like the financial data, if we want to predict the volume in the future we may 
need to only examine a short, recent period. A fixed number or lag (L) of say five or so days 
may suffice. Clearly a single series can then be divided into may such smaller bits – like the 
fecundity data we examined.

Thus, to predict Y=vt, we will have a feature matrix, 𝑋𝑋 = 𝑋𝑋1, . . ,𝑋𝑋𝐿𝐿 , with this structure, 𝑋𝑋1 =
𝑣𝑣𝑡𝑡−𝐿𝐿
𝑜𝑜𝑡𝑡−𝐿𝐿
𝑧𝑧𝑡𝑡−𝐿𝐿

,…, 𝑋𝑋𝐿𝐿 =
𝑣𝑣𝑡𝑡−1
𝑜𝑜𝑡𝑡−1
𝑧𝑧𝑡𝑡−1

. 



Time Series

 For a single variable we can estimate the 
correlation between observations separated by 
1, 2, …,L time units, e.g. Cor(vt,vt-1). This is 
called the autocorrelation. We can also 
estimate what is called the cross-correlation, 
Cor(vt, rt-1) for various lags (note, Cor(vt, rt-

1)≠Cor(rt ,vt-1)). See Jenkins and Watts, 1968, 
Spectral Analysis and its Applications.

 If we are interested in understanding the time 
series we might develop a model of selection 
in a variable environment. Otherwise, a RNN 
might be useful for prediction.

Lag (Months)

Mueller, L.D., L.G. Barr and F.J. Ayala, 1985. Natural selection versus random 
genetic drift: evidence from temporal variation in allele frequencies in 
nature. Genetics 111: 517-554.



When to use deep learning

 If we want a model we can interpret then neural networks will be a 
poor choice and a linear model, GAM, or lasso might be a better 
choice.

 The neural networks will typically require very large training sets 
and this requirement alone may limit the use of neural networks.

 As we saw with the Hitters database, even when we can use neural 
networks they won’t necessarily do better than simpler models.



Fitting a Neural Network

 For our simple one layer model the
fitting process can be summarized
as, 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑜𝑜𝑤𝑤𝑘𝑘 1

𝐾𝐾 ,𝛽𝛽
1
2
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) 2.

 The difficulty come about because
there are multiple minima in these
non-linear, nonconvex functions.

 To overcome these problems and
prevent overfitting there are two general 
strategies,
(i) Slow learning, in conjunction with a 
technique called gradient descent.
(ii) Regularization, usually the ridge or 
lasso.



Fitting a Neural Network

 Consider all the parameters in a single vector, θ. Then the 
minimization problem becomes, 𝑅𝑅 𝜃𝜃 = 1

2
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) 2.

 Algorithm:
1. Start with a guess θ0 and t=0.
2. Iterate until R(θ) fails to decrease.

(a) Find a vector δ that satisfies 𝑅𝑅 𝜃𝜃𝑡𝑡+1 < 𝑅𝑅 𝜃𝜃𝑡𝑡 where 𝜃𝜃𝑡𝑡+1 =
𝜃𝜃𝑡𝑡 + 𝛿𝛿.

(b) Set 𝑜𝑜 ← 𝑜𝑜 + 1



Backpropagation

 To determine the direction of change for θ we calculate the 
gradient of the objective function, ∇𝑅𝑅 𝜃𝜃𝑚𝑚 = 𝜕𝜕𝜕𝜕(𝜃𝜃)

𝜕𝜕𝜃𝜃
|𝜃𝜃=𝜃𝜃𝑚𝑚where θm is 

the current value of θ.
 This derivative gives the direction of steepest increase in R(θ). To 

minimize R(θ) we go in the opposite direction and thus update θ as 
𝜃𝜃𝑚𝑚+1 ← 𝜃𝜃𝑚𝑚 − 𝜌𝜌∇𝑅𝑅 𝜃𝜃𝑚𝑚 , ρ is the learning rate. 

 The magnitude of ρ can be adjusted to insure 𝑅𝑅 𝜃𝜃𝑡𝑡+1 < 𝑅𝑅 𝜃𝜃𝑡𝑡 .
 The calculation of the gradient actually follows the chain rule for 

differentiation (see details on page 436).
 The partial derivatives of R(θ) with respect to w and β shows that a 

fraction of the residual, 𝑦𝑦𝑖𝑖 − 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), affects each parameter which is 
referred to as backpropagation in the neural network literature.



Regularization and Stochastic Gradient Descent

 For a large database and large model the calculation of the 
gradient ∇𝑅𝑅 𝜃𝜃𝑚𝑚 can be time consuming.

 One way to compute this is to take a small sample of the database 
called a minibatch at each gradient step. This process is known as 
stochastic gradient descent (SGD).

 Regularization can be accomplished by adding a penalty function to 
the objective function, R θ, 𝜆𝜆 = −∑𝑖𝑖=1𝑛𝑛 ∑𝑚𝑚=0

9 𝑦𝑦𝑖𝑖𝑚𝑚 log 𝑓𝑓𝑚𝑚 𝑥𝑥𝑖𝑖 + 𝜆𝜆∑𝑘𝑘 𝜃𝜃𝑘𝑘2. 
The lasso can also be used.

 The progress of the fitting is followed through a number of epochs. 
An epoch is the number of gradient updates equal to the size of the 
training set divided by the size of the minibatch.



Dropout Learning

 Similar to a random forest a 
fraction, ∅, of the units in a 
layer, including the input, will 
be dropped. More precisely 
their output is set to zero.

 This dropout happens every 
time a training observation is 
processed.

 This prevents units nodes from 
becoming to “specialized” and 
is considered a form of 
regularization.



Network Tuning

 The number of hidden layers and units per layer. Many think the 
number if units per layer can be large and regularization 
techniques will prevent overfitting.

 Regularization tuning parameters. Adjust parameters like the 
dropout parameter and strength of the penalty function in a ridge 
or lasso estimator.

 Details of the stochastic descent. Adjust batch size, number of 
epochs, and data augmentation. An example of data augmentation 
is changing for the zoom level, rotation, horizontal and vertical flips 
of an image used in image recognition.



Interpolation and Double Descent

 Test MSE usually has a U 
shaped MSE function for test 
data. When the degrees of 
freedom of a polynomial equals 
the sample size there is a single 
least squares solution which 
goes through all points but its 
wild fluctuations produce a very 
high test MSE.

 If we the degrees of freedom 
exceed n there are an infinite 
number of solutions and under 
the right conditions the test 
MSE can actually decrease.



Interpolation and Double Descent
 When a spline fit with 

degrees of freedom (d) that 
exceed n, we can add the 
additional requirement 
among the many solutions 
that we seek on will 
minimize ∑𝑘𝑘=1𝑑𝑑 �̂�𝛽𝑘𝑘2.

 This results in a fit which is 
actually less wild than the 
interpolating polynomial.

 Similar phenomenon can 
happen in neural networks 
especially with data that 
has a high signal to noise 
ratio


	Chapter 10: Deep Learning
	Single Layer Neural Networks
	Single Layer Neural Networks
	Activation Functions
	Multilayer Neural Networks
	Multilayer Neural Networks: outputs
	Convolutional Neural Networks (CNN)
	Convolutional Neural Networks
	Convolution Layers
	Convolution Filters
	Pooling Layers
	Architecture of a Convolutional Neural Network
	Architecture of a Convolutional Neural Network
	Recurrent Neural Networks (RNN)
	Recurrent Neural Networks
	Recurrent Neural Networks
	Time Series Forecasting
	Time Series
	When to use deep learning
	Fitting a Neural Network
	Fitting a Neural Network
	Backpropagation
	Regularization and Stochastic Gradient Descent
	Dropout Learning
	Network Tuning
	Interpolation and Double Descent
	Interpolation and Double Descent

